Romeil Sandhu
Georgia Institute of Technology (Thesis)
Publication year: 2010

The field of computer vision focuses on the goal of developing techniques to exploit and extract information from underlying data that may represent images or other multidimensional data. In particular, two well-studied problems in computer vision are the fundamental tasks of 2D image segmentation and 3D pose estimation from a 2D scene. In this thesis, we first introduce two novel methodologies that attempt to independently solve 2D image segmentation and 3D pose estimation separately. Then, by leveraging the advantages of certain techniques from each problem, we couple both tasks in a variational and non-rigid manner through a single energy functional. Several real-time examples are provided under varying imaging modalities.